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Abstract. Seismic data is often sparse and unevenly distributed due to the high costs and logis-

tical challenges associated with deploying physical seismometers, limiting the application of Ma-

chine Learning (ML) in earthquake analysis. To address this gap, we introduce PyAWD, a Python

library designed to generate high-resolution synthetic datasets simulating spatio-temporal acous-

tic wave propagation in both two-dimensional and three-dimensional heterogeneous media. By

allowing fine control over parameters such as wave speed, external forces, spatial and tempo-

ral discretization, and media composition, PyAWD enables the creation of ML-scale datasets that

capture the complexity of seismic wave behavior. We illustrate the library’s potential with an epi-

center retrieval task, showcasing its suitability for designing complex, accurate seismic problems

that support advanced ML approaches in the absence or lack of dense real-world data.
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1 Introduction

Earthquakes, sudden and intense geological events, affect lives and infrastructure. Predicting them

and accurately interpreting measurements is difficult due to the complex behavior of seismic waves

in varied fields. Seismic data challenges supervised ML models as they require high-resolution data

that links wave propagation to specific features, such as epicenter or wave timings. Seismometers,

though precise, are costly and cover limited areas, resulting in sparse datasets [Woollam et al. 2022].

Consequently, ML models often lack the details needed to effectively model seismic behavior. To

overcome these data constraints, we introduce PyAWD, a Python library for creating synthetic seis-

mic datasets with high spatio-temporal detail. It simulates acoustic wave propagations [Demanet

2015]through 2D and 3D fields, yielding PyTorch-compatible data that can improve ML pipelines by

providing intricate wave and spatial information. Recent ML advancements hold promise for earth-

quake prediction and epicenter detection [Ridzwan and Md Yusoff 2023], but existing datasets limit

further progress. Studies emphasize the need for high-resolution data to unlock ML’s full potential in

seismology [Lehmann et al. 2024]. By producing synthetic datasets that mimic geological conditions,

PyAWD enables effective ML model training. Past work highlights the lack of synthetic datasets for
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seismic ML studies [S. Mostafa Mousavi and Beroza 2023; Lehmann et al. 2024]. Data sources like

satellite images and local seismometer readings [Cambrin and Garza 2024; S Mostafa Mousavi et al.

2019]offer limited spatial coverage. Existing tools like Synthoseis [Merrifield et al. 2022]simulate 2D

data, but comprehensive customizable 3D solutions are nonexistent. PyAWD addresses this gap by

enriching spatial data for ML applications. PyAWD provides essential features for researchers:

– Customization of material properties, simulation duration, spatial/temporal resolution, and source

details.

– Comprehensive data access: Seismograms or full spatial overviews enable studies not feasible

with current real-life datasets, which consist only of seismograms, temporal measurement on (usu-

ally a small amount of) chosen spatial points.

– Integration with ML frameworks: PyTorch-compatible datasets aid ML model development for

seismic and other geophysical applications.

The paper is organized as follows: Section 2 covers PyAWD’s methods, algorithms, and specifications.

Section 3 presents a toy example study, focused on the question of epicenter retrieval, to show the

usefulness of PyAWD. Section 4 situates our findings within related research, noting limitations and

proposing future directions.

2 Methods/Materials and Methods

PyAWD is a tool for simulating wave propagation phenomena in complex media, allowing customiza-

tion of parameters like wave speed, attenuation, and external forces. A standout feature is its han-

dling of spatio-temporally varying propagation fields, enabling simulations in heterogeneous envi-

ronments with different material properties. PyAWD integrates with Pytorch, producing datasets for

Deep Learning applications. Visualization tools are also implemented, supporting both 2D and 3D

representations of wave propagation, enhancing interpretation of simulations. It also offers tools for

visualizing specific points in the wave field, aiding detailed analyses of the wave behavior. PyAWD

uses the anisotropic nondispersive Acoustic Wave Equation [Demanet 2015], given by:

d2u

dt2
= c∇2u− α

du

dt
+ f (1)

where u is the displacement field, t is time, c the wave speed, α an attenuation factor, and f an ex-

ternal force. The ∇ operator is the Laplacian operator, yielding the vector of spatial derivatives of u.

The parameter c introduces spatio-temporal heterogeneity, varying over time and space, modeled

as c(x, y, t). Users can define custom fields, simulating complex geological structures with different

material properties. Figure 1 shows a wave propagation simulation with a variable c field, modeling

temperature variation. Another example is the Marmousi field (Figure 2) [Versteeg 1994], provided as

a preset in PyAWD, simulating complex geological formations. The external force is essential for realis-

tic simulations. PyAWD includes an explosion-shaped force field, shown in Figure 3. The simulations
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Fig. 1. Example of wave propagation with spatial and spatio-temporal varying propagation speed fields.

run on Devito [Luporini et al. 2020; Louboutin et al. 2019], a Python-based finite difference solver for

partial differential equations (PDEs). Devito uses SymPy [Meurer et al. 2017]for symbolic problem

definitions, generating optimized C++ code, which is JIT-compiled for performance. This enables fo-

cus on algorithmic design over low-level coding. Devito’s optimizations enhance code performance,

but PyAWD abstracts the numerical complexity for ease of use, particularly for seismologists and ML

engineers. Seismic analysis benefits from neural network applications in fields like earthquake detec-

tion [S. Mousavi et al. 2019]and phase picking [Ross, Meier, and Hauksson 2018]. PyAWD is compatible

with PyTorch [Paszke et al. 2017], allowing data to be processed using tools like DataLoaders and

torchvision transformations [maintainers and contributors 2016]. PyTorch provides scalabil-

ity and easy integration with standard Python libraries, allowing the connection seamlessly to tools

like SciPy and sklearn. PyAWD is designed for interdisciplinary users, offering Jupyter Notebooks that

introduce key concepts and demonstrate the library functions, covering:

– Acoustic Wave Equation solutions in Devito,

– Interrogators usage (an abstraction of seismometers, whose place is customizable),

– Dataset generation,

– Heterogeneous field simulations,

– Spatio-temporal field variations

A complete documentation is also available1.

3 Validation and results

In this section, we demonstrate a toy example of PyAWD for epicenter retrieval [Perol, Gharbi, and

Denolle 2018], aimed at determining wave epicenter coordinates (x0, y0) based on ground motion

recorded at specific locations, stored in seismograms. Traditional methods use three or more seismome-

ters [Braile 2002]to estimate epicentral distance using triangulation, yet fewer than three devices yield

1 https://pascaltribel.github.io/pyawd/
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Fig. 2. Marmousi field preset in PyAWD. Darker colors indicate slower speeds.
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Fig. 3. External force example: left shows vector scaling; right shows scaling factor over time.

uncertainty. Recent Machine Learning advances show that seismogram data holds valuable informa-

tion for this task [Perol, Gharbi, and Denolle 2018; Noda et al. 2012; Saad et al. 2023; Türkmen et al.

2024]. We hypothesize that reflection interferences within heterogeneous propagation fields provide

valuable information. This could reduce epicentral uncertainty. This behavior is inspired by how hu-

mans localize sound using limited reference points [Carlini, Bordeau, and Ambard 2024]. To validate

PyAWD’s realism and utility, we generate 2D acoustic wave simulations in the heterogeneous Mar-

mousi field (Figure 2), producing two datasets: one for training (4096 simulations) and one for testing

(512 simulations) over a 256 × 256 grid. Two interrogators at coordinates (−64, 0) and (64, 0) record

ground motion for 10 seconds at 100Hz. Epicenter positions and parameters vary within field bound-

aries and intervals, ensuring a diverse dataset. An example is shown in Figures 4 and 5. We approach

Fig. 4. Example of propagating wave in the Marmousi field, with two interrogators.

the regression problem with 14 ML architectures using raw seismograms, including:

Baseline : Constant average of training dataset
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Fig. 5. Example of interrogators response following the simulation in Figure 4

Linear Models : Linear Model, Ridge Regression, Stochastic Gradient Descent

Neighbors Model : KNN Neighbors

Support Vector Machines : Support Vector Regression [Chang and Lin 2011]

Tree Model : Decision Tree [Breiman et al. 1984]

Ensemble Models : Extra Trees [Geurts, Ernst, and Wehenkel 2006], XGBoost [Chen and Guestrin

2016], Random Forest [Breiman 2001]

Deep Learning : Multi-layer Perceptron [Hinton 1989], Temporal CNN (TCNN) [Lea et al. 2016]

We also applied these models to features extracted from seismograms using tsfresh [Christ et al.

2018], which provides:

– Basic Statistics: Absolute energy, maximum values, and mean.

– Trend and Autocorrelation: Time trends and autocorrelation patterns.

– Complexity Measures: Entropy and compression-based complexity.

– Peak Detection: Peaks and their duration.

– Crossing and Ratio Analysis: Series threshold crossings and value ratios.

Most models are implemented in sklearn [Pedregosa et al. 2011], except for the TCNN which is

implemented in PyTorch [Paszke et al. 2017]. Model performance on the testing dataset is assessed

using the mean squared error (MSE). Figures 6 and 8 present the MSE for each model on test data.

Figure 7 shows raw data model predictions, for the first and second coordinates, and the spatial pre-

dicted/expected discrepancies. Green points mark actual epicenters, and red points, linked by blue

lines to corresponding green points, are predictions. Line length indicates prediction error: shorter

lines mean higher accuracy. Figure 9 shows the feature-based predictions. The fact that simple mod-
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Fig. 6. Testing set errors with architectures trained on raw seismograms.
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Fig. 7. Spatial comparison of predicted and expected epicenter locations for raw seismogram-trained architec-
tures.
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Fig. 8. Testing set errors with feature-engineered architectures.
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Fig. 9. Spatial comparison of predicted and expected epicenter locations for feature-engineered architectures.
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els struggle with generalization indicates a challenging task. Indeed, linear model, ridge regression,

decision tree and SVM fail to capture the observation-epicenter relationship. Non-linear models, par-

ticularly Extra Trees and TCNN, excel, with noticeable discrepancies across coordinates likely due to

field asymmetry. Raw data models also surpass feature-engineered ones, suggesting further complex

modeling approaches as proposed in the literature [Saad et al. 2023; Türkmen et al. 2024].

4 Discussion

Our results show PyAWD as a valuable simulation tool that aids Machine Learning in seismic wave

analysis. It has been shown on the question of epicenter retrieval with minimal seismometer data.

Experiments indicate that complex architectures like Temporal Convolutional Neural Networks (TC-

NNs) are effective for handling this spatio-temporal data, supporting the importance of advanced

models in seismic applications. More importantly, PyAWD offers a sufficient and cost-efficient alterna-

tive to deploying numerous seismometers, by generating high-resolution synthetic seismic datasets.

Especially, the problem of determining the best placement for a pair of measurement stations to re-

trieve an earthquake epicenter can be tackled using PyAWD in further work.While PyAWD alleviates

some data acquisition limitations, challenges remain. Synthetic data may not fully replicate real-world

seismic complexities, such as environmental noise or unexpected wave interactions. Future efforts

should focus on implementing different governing propagation equations. Moreover, the generation

of realistic heterogeneous propagation fields is not a trivial part that has to be studied as well. The im-

pact of PyAWD extends beyond earthquake epicenter studies. It can simulate various seismic events,

allowing research in areas such as resource exploration, hazard assessment, and infrastructure moni-

toring. By offering control over material properties and wave sources, PyAWD broadens the scope for

geophysical studies and potential new applications. In conclusion, PyAWD provides a customizable

tool that supports Machine Learning research in seismic analysis by generating synthetic datasets ef-

ficiently. While challenges in integrating synthetic and real-world information remain, PyAWD shows

strong potential for enhancing seismic research and data accessibility.

5 Conclusion

This paper has introduced PyAWD, a Python tool that enhances seismic analysis through customizable

wave simulations integrated with Machine Learning. By facilitating synthetic data creation, PyAWD

helps ML-based earthquake analysis research. Future enhancements to PyAWD include refining its

wave solver with options like the Elastic Wave Equation, finite-element or finite-volume methods.

However, its current modularity allows the support for different equations and conditions, enabling

varied simulations.
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– Name of the Library: PyAWD

– Contact: pascal.tribel@ulb.be

– Hardware requirements: None

– Program language: Python 3.x

The source codes are available for downloading at the link: https://github.com/pascaltribel/pyawd
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