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Abstract. Accurate electricity load forecasting is essential for ensuring
the reliable and efficient operation of power systems. However, modeling
complex temporal patterns across multiple timescales using heteroge-
neous data sources remains a complex and challenging task. Overcom-
ing this challenge enables more robust forecasting models that support
better grid management and decision-making in real-world operational
settings. This paper presents a novel dual-CNN architecture for medium-
term electricity load forecasting that leverages temporal patterns across
multiple timescales. Our approach combines two parallel convolutional
neural networks: one processes historical load data, and the other pro-
cesses meteorological information. These are merged into a final linear
layer that adaptively adjusts an optimal persistence forecast. The archi-
tecture exploits short-term patterns and long-term seasonal effects by
incorporating historical data from the previous month and correspond-
ing periods of the prior year. We demonstrate the generalizability of
our approach by forecasting the total load at a 30-hour horizon in the
Belgian grid system, using a dataset comprising load measurements, me-
teorological data, and system imbalance information. Through rigorous
validation, the results evidence that our model consistently outperforms
the existing operational forecasts provided by the Belgian transmission
system operator ELIA and several forecasting algorithms. This research
contributes to the growing body of work on electricity load forecasting
by introducing a generalizable architecture that efficiently captures com-
plex temporal dynamics while remaining computationally tractable for
operational deployment.

Keywords: Electricity load forecasting · Neural networks · Time series
forecasting · Feature extraction · Convolutional neural networks

1 Introduction1

Accurate electricity load forecasting is essential for power system planning,2

operational security, and market efficiency. System operators worldwide rely on3
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these forecasts for day-ahead scheduling, reserve allocation, and congestion man-4

agement. Medium-term forecasts, particularly in the 24-48 hour horizon, are es-5

pecially valuable for operational planning and market participation, but remain6

challenging due to the complex temporal dynamics involved. Load forecasting7

has been extensively studied, with approaches ranging from statistical methods8

to increasingly sophisticated machine learning techniques. However, the complex-9

ity of electricity consumption patterns, driven by economic activities, weather10

conditions, calendar effects, and behavioral factors, continues to challenge fore-11

casting precision. Recent advances in deep learning, particularly convolutional12

neural networks (CNNs), offer promising approaches for capturing these complex13

temporal patterns without requiring extensive feature engineering.14

Despite significant progress, several challenges persist, particularly relevant15

to operational and viable medium-term forecasting. First, while methods for16

parallel processing of inputs have been proposed [27,5], there is still a need17

for developing specialized CNN architectures explicitly designed for the dis-18

tinct characteristics of load versus meteorological time series over long historical19

windows relevant for medium-term load forecasting (MTLF). Second, the inte-20

gration of domain knowledge, specifically optimally identified persistence fore-21

casts, with advanced DL feature extractors like CNNs remains underexplored.22

Third, many complex hybrid models involving multi-stage decomposition or large23

ensembles [34,35] may face challenges regarding computational tractability for24

operational deployment, where timely retraining and inference are crucial. Fi-25

nally, there is a continuous need for generalizable frameworks that can be readily26

adapted to different power systems and forecasting horizons without requiring27

extensive system-specific tuning.28

In this paper, we propose a novel dual-CNN architecture for medium-term29

electricity load forecasting, and the main contributions of this paper are:30

– our architecture employs two parallel CNNs to efficiently extract relevant31

temporal patterns from historical load data and meteorological information,32

– the proposed model captures daily, weekly, and monthly patterns while in-33

corporating yearly seasonal effects through lagged annual features,34

– our model learns to adjust an optimal persistence forecast identified through35

autocorrelation analysis by combining statistical insights with deep learning36

capabilities, and37

– our model remains tractable for operational deployment despite processing38

large volumes of historical data.39

We demonstrate the effectiveness of our approach by forecasting the total40

load at a 30-hour horizon in the Belgian grid system, comparing our results41

against operational forecasts provided by the Belgian transmission system op-42

erator ELIA and several traditional ML algorithms. This specific forecasting43

horizon has critical operational significance: in day-ahead electricity markets,44

load forecasts must typically be submitted by late afternoon (around 6 PM) for45

the entire following day’s operations. This means a single forecast value must46

cover the entire 30-hour period from the submission deadline through the end of47
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the next day. While Belgian load data serves as our case study, the architecture48

is designed to be generalizable to other power systems and forecasting horizons.49

The remainder of this paper is organized as follows: Section 2 provides an50

overview of related work in electricity load forecasting, emphasizing deep learning51

approaches. Section 3 outlines our model architecture and training procedure,52

while subsection 3.1 describes the data sources and preprocessing methodol-53

ogy used in our case study. Section 4 defines the numerical simulations used to54

validate our proposal, and Section 5 presents the experimental results and com-55

parative analysis, and discusses implications and generalizability. Lastly, Section56

6 concludes with key findings and suggestions for future research.57

2 Literature Review58

Electricity load forecasting (ELF) has evolved significantly over the decades,59

driven by the critical need for accurate predictions in power system operations60

and energy markets [1,15]. Methodologies have progressed from traditional sta-61

tistical approaches to sophisticated machine learning (ML) and deep learning62

(DL) techniques, often culminating in hybrid models that leverage the strengths63

of multiple methods [12].64

Conventional approaches often rely on statistical time series models. Autore-65

gressive Integrated Moving Average (ARIMA) models and their seasonal variants66

(SARIMA) capture linear dependencies and seasonality effectively [29,4]. Expo-67

nential smoothing methods, particularly Holt-Winters, have also been widely68

used for short-term forecasting [30]. Regression-based models incorporating cal-69

endar effects, weather variables, and economic indicators provide interpretability70

but often struggle with complex non-linearities [17,1].71

The limitations of purely statistical methods led to the adoption of ma-72

chine learning techniques. Support Vector Regression (SVR) demonstrated im-73

proved handling of non-linear relationships [6,35]. Ensemble methods like Ran-74

dom Forests and Gradient Boosting offer robustness [20,28]. Stacking or blend-75

ing predictions from multiple base models (e.g., ANN, XGBoost, LSTM, SVR)76

using a meta-learner is another popular strategy to improve robustness and77

accuracy [35,16]. In general, these methods typically require careful, often man-78

ual, feature engineering to incorporate domain knowledge effectively, limiting79

their ability to automatically discover intricate temporal patterns across diverse80

timescales.81

The advances of deep learning methods have significantly improved ELF by82

enabling automatic feature extraction from raw data [15,12]. Recurrent Neu-83

ral Networks (RNNs), particularly Long Short-Term Memory (LSTM) [34,33]84

and Gated Recurrent Unit (GRU) [23,9] architectures, became popular due to85

their inherent ability to model sequential dependencies [19,25]. However, training86

RNNs on very long sequences, as often required for capturing yearly seasonality87

in medium-term forecasting, can be computationally challenging and prone to88

issues like vanishing gradients.89

Convolutional Neural Networks (CNNs), originally developed for image pro-90

cessing, have emerged as a powerful alternative for time series analysis, includ-91
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ing ELF [7,14]. CNNs excel at extracting local patterns through convolutional92

filters and are highly parallelizable, making them efficient for processing long93

sequences [32]. Multi-channel or parallel CNN architectures have been proposed94

to process different input variables (e.g., load, weather) independently before fu-95

sion [22], aligning with the dual-path concept in our work. Compared to RNNs,96

CNNs can be less sensitive to long-range dependencies but are adept at capturing97

hierarchical features across multiple timescales [31].98

Recognizing that no single model is universally optimal, hybrid approaches99

combining different techniques have become a major research trend [1,15]. Many100

studies employ signal decomposition techniques like Variational Mode Decompo-101

sition (VMD) [34,23], Empirical Wavelet Transform (EWT) [14], Empirical Mode102

Decomposition (EMD) [26], or wavelet transforms [13,18] to separate the load103

signal into simpler components (e.g., trend, seasonality, noise). Different models104

(often LSTMs, GRUs, or SVMs) are then trained on these components before105

reconstructing the final forecast. While effective, these methods can introduce106

complexity and potential information leakage if not carefully implemented [34].107

Combining different DL architectures, such as CNNs for feature extraction108

followed by LSTMs for sequence modeling (CNN-LSTM) [31] and, potentially,109

attention mechanisms [9], aims to leverage the complementary strengths of differ-110

ent network types. Novel architectures like Kolmogorov-Arnold Networks (KANs)111

adapted for recurrence (KARN) [8] or Residual Networks [13] also continue to112

emerge.113

Lastly, integrating statistical insights, such as persistence forecasts, with114

ML/DL models is a promising direction. Persistence models provide strong base-115

lines, especially for short horizons or regular patterns [21]. Li et al. [21] combined116

persistence with feedforward networks, but without the automatic feature extrac-117

tion of CNNs or a systematic method for identifying the optimal persistence lag.118

Other advanced concepts gaining traction in ELF include transfer learning for119

data-scarce scenarios [33], spatial-temporal modeling for distributed loads [18],120

forecasting for integrated energy systems [26], and incorporating explainability121

techniques [2].122

3 Dual-CNN architecture with adaptative persistence123

This section details our forecasting approach for the Total Load prediction124

task. We start detailing the data preparation for the forecasting algorithm (Sec-125

tion 3.1). Next, we introduce our novel dual-CNN architecture (Section 3.2)126

designed to leverage both load-related and meteorological data. We describe the127

specialized CNN feature extractors that process these distinct data streams, fol-128

lowed by our adaptive integration layer that combines extracted features with129

persistence-based forecasts.130

3.1 Data preparation131

Let x ∈ R be a variable observed over a discrete time scale λ within a pe-132

riod t ∈ {1, 2, . . . , T} where T ∈ N is the number of observations. Hence, a133
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univariate time series can be defined as a sequence of observations {x(t)}Tt=1 =134

{x(1), x(2), . . . , x(T )}. Similarly, we can define a multivariate time series as a se-135

quence {X(t)}Tt=1 = {X(1),X(2), . . . ,X(T )} of vectors of D variables, such that136

X(t) = [x
(t)
1 , x

(t)
2 , . . . , x

(t)
D ]. Typically, a model F is used to forecast the next H137

steps. In this paper, we assume that total load measurements (L) and meteoro-138

logical data (M) are available in the form of a multivariate time series, such as139

D = |L|+ |M|.140

All independent data sources are converted to UTC and merged on their141

respective timestamp fields for temporal alignment. The merged dataset is then142

resampled to match a given dataset’s granularity. Let us assume that X ∈ RD×T
143

is the resulting dataset of this pre-processing step, and that XL ∈ RL×T and144

XM ∈ RM×T refer to the multivariate time series containing the total load145

measurements and meteorological variables respectively.146

Firstly, we need to transform XL and XM into sets QL and QM of sub-147

sequences obtained by applying a rolling window of size l in XL and XM inde-148

pendently. Consequently, each sample in QL and QM is a tensor with the form149

L × l and M× l respectively. For target creation, we used the total load value150

h hours ahead as the prediction target for each time point. Unlike traditional151

forecasting problems where a complete horizon h is forecasted, we only predict a152

single point at time h in the future. Figure 1 shows an example of the forecasted153

value at time h given the observed total load until time T .154

Fig. 1. Forecast of a single-point at time h in the future, given a measured variable
until time T . For visualization purposes, this example only considers the total load.

A key innovation in our approach is the systematic identification and inte-155

gration of optimal persistence forecasts. Therefore, an autocorrelation analysis156

should be conducted to determine the optimal persistence lags for the electric-157

ity load time series. This persistence analysis informed our architecture design158

in two fundamental ways: first, by establishing an optimal persistence baseline159

of length B for our model to adaptively adjust, and then guiding our feature160

selection to explicitly incorporate historical values capturing daily, weekly, and161

yearly patterns. The integration of this domain knowledge with deep learning162
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techniques represents a key contribution of our approach, and it is further de-163

tailed in the next sections.164

3.2 Network Architecture165

Based on the persistence analysis and the multi-source nature assumed in this166

research, we developed a novel dual-CNN architecture with three main compo-167

nents. A Load Feature extractor block processes historical load-related time168

series (QL) and aWeather Feature extractor block processes weather-related169

time series (QM). Lastly, a Adaptive Integration Layer consists of a single170

linear layer that combines, through concatenation and addition operators (Fig-171

ure 2), the extracted features with the optimal persistence forecast to produce172

the final prediction. Figure 2 provides a visual representation of this architecture.173

Load Data (QL) Weather Data (QM) Persistence (1)

Conv2D (1→8)

Conv2D (8→1)

Linear (2016→512)

Linear (512→128)

Linear (128→16)

Conv2D (1→8)

Conv2D (8→1)

Linear (2688→512)

Linear (512→128)

Linear (128→16)

Linear (32→1)

+

Forecast Output

Load Feature extractor Weather Feature extractor

Adaptive Integration Layer

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

Fig. 2. Architecture of the dual-CNN architecture for total load forecasting. The model
consists of two convolutional feature extractors for load and meteorological data, fol-
lowed by a concatenation and a final linear layer that adjusts the baseline prediction.

Both CNN feature extractors follow identical structures but operate on dif-174

ferent input data types. This parallel design enables the model to learn relevant175

patterns from independent data sources before integration. Each feature extrac-176
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tor begins with an input layer that accepts multi-dimensional time series data177

arranged as a 2D tensor, which in this case, the input layer consists of the se-178

quence of QL and QM for total load measurements and meteorological variables179

respectively.180

The structure of a feature extractor block contains a convolutional layer with181

8 filters, using 3×3 kernels and “same” padding, to capture local patterns across182

both feature and time dimensions. Next, a second convolutional layer with a183

single filter (also using a 3×3 kernel and “same” padding) integrates the output184

of the 8 channels from the first layer. The architecture then performs feature185

flattening, converting 2D outputs to 1D vectors for further processing. Finally,186

dimensionality reduction occurs through three fully-connected layers with sizes187

512, 128, and 16 nodes, progressively compressing the extracted features into a188

compact representation. Notice that the output of the first two CNN layers and189

Linear layers is passed through the hyperbolic tangent (tanh) activation function190

to add a non-linearity and maintain the gradient flow stable for deep networks.191

The final component of our architecture is the Adaptive Integration Layer192

that concatenates the output of the two Feature Extractor blocks to obtain a193

32-dimensional feature vector (16 from each CNN extractor). Then, a single194

linear layer processes this vector to produce an adjustment value that is further195

combined with the persistence forecast via element-wise addition to produce the196

model’s final prediction.197

This design choice leverages the already strong predictive power of optimal198

persistence forecasts, simplifies the learning task by focusing on predicting the199

correction rather than absolute values, and provides interpretability by sepa-200

rating the persistence forecast from the model’s adjustments. It also allows for201

easy adaptation to different systems by identifying system-specific optimal per-202

sistence lags. This combination of CNNs for feature extraction with an adaptive203

persistence approach represents a novel contribution to electricity load forecast-204

ing methodology.205

4 Numerical simulations206

Our study uses two primary data sources: Belgian total load measurements207

(including system imbalance information) and weather data, collected from 26/07/2016208

until 23/03/2025. The Belgian total load data were obtained from ELIA’s open209

data platform [11], which contains measurements taken at 15-minute intervals.210

Each entry includes the total load, the system imbalance, and the Most Recent211

Forecast values provided by ELIA approximately 30 hours before the corre-212

sponding forecasting time point. The latter is used in this research as the base-213

line forecast for comparison. System imbalance data, representing deviations214

between generation, consumption, and commercial transactions, was obtained215

from ELIA’s open data platform [10]. These 15-minute interval measurements216

provide information about real-time market and system conditions that may217

correlate with load forecast errors.218

Hourly meteorological measurements across Belgium were retrieved from the219

Royal Meteorological Institute [24]. The data collected from several weather220
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stations distributed throughout Belgium were aggregated to provide a compre-221

hensive representation of the country’s weather conditions.222

Since these data sources have different data granularity, we resampled the223

total load and system imbalance measurements to hourly intervals to match the224

meteorological data’s granularity. Additionally, we included the previous year’s225

load for the same forecast horizon. Forward and backward filling were applied226

to handle any missing values in the data. Through this process, we created a227

comprehensive dataset spanning multiple years with hourly resolution, allowing228

for robust model training and evaluation.229

In summary, three features related to the total load (actual total load, total230

load one year before the forecasting point, and System imbalance ) and four231

weather variables (soil average temperature, precipitation quantity, wind speed,232

and air pressure) were used as input features to our proposal and all the models233

included in the benchmark. For target creation, we designated the total load234

value 30 hours ahead as demonstrated in Figure 1.235

A key innovation in our approach is the identification and integration of236

optimal persistence forecasts. Before developing our neural network architec-237

ture, we conducted a comprehensive autocorrelation analysis to identify optimal238

persistence lags for electricity load time series. For our Belgian case study, we239

systematically evaluated lags from 1 hour up to two years (17,520 hours), cal-240

culating the root mean square error (RMSE) for each lag when used to predict241

values 30 hours ahead (the target moment in time).242

Figure 3 shows that the persistence analysis highlighted a strong daily (24-243

hour), weekly (168-hour), and yearly (8,760-hour) patterns in the load data.244

Notably, the weekly lag demonstrated the strongest predictive power, suggest-245

ing that the load value from exactly one week before the forecast horizon provides246

a strong persistence forecast. This finding aligns well with established insights247

into electricity consumption behavior, which typically follow weekly cycles of248

economic and social activity. This persistence analysis informed our architecture249

design in two fundamental ways: first, by establishing the one-week persistence as250

an optimal persistence forecast for our model to adaptively adjust NN’s predic-251

tions, and then guiding our feature selection to explicitly incorporate historical252

values capturing daily, weekly, and yearly patterns.253

Based on the monthly cycle observed in the persistence analysis, we decided254

to use a lag value of 28 days (representing 672 observations in the hourly pre-255

processed dataset). Therefore, each instance in QL and QM is a matrix of shape256

3 × 672 and 4 × 672, respectively (or 2,016 and 2,688 values, respectively, if257

flattened). Based on this analysis, the proposed architecture efficiently captures258

patterns at multiple scales across the 28-day input window, from short-term259

fluctuations to weekly cycles. The integration of this domain knowledge with260

deep learning techniques represents a key contribution of our approach.261

The model was trained through a comprehensive procedure that began with262

the data preparation procedure explained previously. To ensure robust evalua-263

tion, a 5-fold cross-validation scheme with shuffling was adopted. The optimiza-264

tion of the model’s parameters was conducted with the Adam optimizer with an265
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Fig. 3. Persistence analysis of the hourly-sampled total load data. Each point repre-
sents the RMSE of a persistent model using the lag given on the x axis. The five plots
show the analysis on different time scales, for day, week, month, year, and two years.
The analysis reveals strong daily, weekly, and yearly cycles. A weekly lag (7 days)
stands out as the most effective for persistence modeling, indicating that using the
load value from one week prior yields the best forecast. Monthly patterns are notably
less distinct.

initial learning rate of 0.0002, combined with a ReduceLROnPlateau scheduler266

(factor=0.75, patience=5) for adaptive learning rate adjustment. Mean squared267

error (MSE) between predicted and actual load values served as the loss func-268

tion. Each fold underwent training for 30 epochs with a batch size of 32. For269

evaluation purposes, both our model and ELIA’s forecasts were evaluated using270

RMSE and Mean Absolute Error (MAE) on the same validation sets, enabling271

direct comparison. In addition, we report the training and test times (in seconds)272

of each forecasting model computed by adding the time needed to train/test the273

algorithm in each fold, respectively.274

We contrast the proposed architecture’s performance against several ML al-275

gorithms: Elastic net (ElasticNet)1, Gradient boosting(GBR)2, k-nearest neigh-276

bors(KNN)3, Random Forest (RF)4 with and without feature selection(PipeRF)5,277

1 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.

ElasticNet.html
2 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

GradientBoostingRegressor.html
3 https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.

KNeighborsRegressor.html
4 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestRegressor.html
5 https://scikit-learn.org/stable/modules/generated/sklearn.feature_

selection.SelectFromModel.html

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html
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Lasso regression (Lasso)6, PLS7, Ridge regression (Ridge)8, and LightGBM9.278

The library HyperOpt [3] was considered to perform the hyperparameter op-279

timization of these algorithms (20 iterations) using the MAE as the optimiza-280

tion objective. Appendix A summarizes the hyperparameters considered dur-281

ing the optimization. Unlike the proposed approach, which uses a set of CNN282

kernels to extract relevant features directly from the data, the benchmark algo-283

rithms require training on high-dimensional datasets (75,198 instances and 4,704284

features). Therefore, we included an intermediate step to perform data fusion285

through Principal Component Analysis (PCA) to reduce the number of features286

before training the benchmarking algorithms. PCA revealed that 1,500 compo-287

nents are enough to represent the original set of features, explaining more than288

98.6% of the total variance in the data. Therefore, we used this reduced dataset289

to train the algorithms in the benchmark to keep processing time realistic and290

make the evaluation process more practical and efficient.291

5 Results and discussion292

Table 1 presents the cross-validation results, comparing our neural network293

model against ELIA’s operational forecasts and the algorithms included in the294

benchmark.295

The superior performance of our dual-CNN architecture compared to opera-296

tional forecasts in the Belgian case study demonstrates several key advantages of297

our approach. The CNN architecture captures complex temporal patterns across298

multiple timescales without requiring explicit feature engineering or predeter-299

mined lag structures, which is particularly valuable for electricity load forecast-300

ing, where patterns exist at daily, weekly, and seasonal levels. By using parallel301

CNNs for different data types, our architecture learns optimal representations302

for each source before integration, recognizing that load data and meteorological303

data have different characteristics and temporal dynamics. Despite processing a304

month of historical data at hourly resolution, our architecture remains compu-305

tationally tractable through judicious dimensionality reduction, with the final306

32-dimensional feature vector effectively compressing the relevant information307

from 7 features across 672 time points. Rather than predicting absolute load308

values, our model learns to adjust an already strong persistence baseline, sim-309

plifying the learning task while maintaining high accuracy.310

While our experimental validation focused on Belgian load data, several as-311

pects of our architecture suggest broader generalizability. The system-agnostic312

design of the dual-CNN architecture makes no assumptions specific to the Bel-313

gian power system and could be applied to any region where similar data sources314

6 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.

Lasso.html
7 https://scikit-learn.org/stable/modules/generated/sklearn.cross_

decomposition.PLSRegression.html
8 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.

Ridge.html
9 https://lightgbm.readthedocs.io/en/stable/

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
https://scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
https://lightgbm.readthedocs.io/en/stable/
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Table 1. Cross-validation results of the benchmarking of our proposal

Algorithms
MAE

(mean ± std.)
RMSE

(mean ± std.)
Training time
(mean (sec.))

Validation time
(mean (sec.))

ELIA forecast 164.6831 ± 1.48 205.8304 ± 2.03 - -

Our proposal 146.4913 ± 8.86 187.1914 ± 10.36 628.29 2.36

ElasticNet 313.726 ± 2.02 433.6901 ± 1.67 1.06 0.03

GBR 228.3367 ± 2.64 298.4986 ± 3.71 15.61 0.03

KNN 229.8504 ± 1.93 307.2091 ± 2.68 9.62 1791.09

Lasso 313.6927 ± 1.97 433.6443 ± 1.61 2.55 0.03

PipeRF 472.2681 ± 4.62 626.8217 ± 5.20 303 0.18

PLS 314.9771 ± 1.75 435.2407 ± 1.53 46.17 0.1

Ridge 314.9765 ± 1.75 435.24 ± 1.53 1.18 0.05

RF 908.5341 ± 3.25 1130.5639 ± 3.71 68.28 0.17

LightGBM 206.4131 ± 1.41 270.9815 ± 2.10 199.71 0.33

are available. Our approach features flexible persistence integration, as the per-315

sistence analysis component can identify system-specific optimal lags, adapting316

the model to different consumption patterns across regions. Additionally, the317

CNN architecture offers a scalable input window, meaning that although we318

used 28 days of history for our experiments, it can accommodate different input319

window lengths based on specific forecasting needs. The model also provides an320

adaptable forecasting horizon; while we focused on 30-hour ahead forecasting,321

the architecture could be trained for different horizons by adjusting the target322

definition accordingly. This generalizability makes our approach potentially valu-323

able for a wide range of electricity forecasting applications beyond the specific324

case study presented.325

The medium-term forecasting capabilities of our architecture have significant326

practical importance. Improved forecasts in the 24-48 hour horizon enhance day-327

ahead operational planning, reserve allocation, and maintenance scheduling for328

system operators. For market participants, more accurate forecasts can reduce329

imbalance costs, improve bidding strategies, and optimize generation scheduling.330

The demonstrated improvement over operational forecasts suggests potential331

economic value that could justify implementation costs, especially in large power332

systems. Additionally, the architecture could be extended to integrate renewable333

generation forecasts, supporting the transition to low-carbon energy systems.334

Despite the promising results, several limitations should be acknowledged.335

The model’s reliance on historical patterns means that unprecedented events336

(e.g., pandemic lockdowns) may still pose challenges without specific adaptation337

mechanisms but the persistence baseline helps tackling this. While our approach338

integrates meteorological data, it does not explicitly account for forecast un-339
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certainty in these inputs, which could affect operational reliability. The current340

implementation produces point forecasts rather than probabilistic distributions,341

limiting uncertainty quantification for risk-aware decision-making. Despite the342

interpretable persistence component, the CNN feature extractors remain largely343

black-box, limiting full explainability of predictions.344

6 Conclusion and Future Work345

This paper proposes a dual-CNN architecture with adaptive persistence inte-346

gration for medium-term electricity load forecasting. The model extracts features347

from multiple data sources using parallel convolutional networks and refines a348

persistence forecast through an adaptive mechanism. It captures temporal pat-349

terns across multiple timescales without extensive feature engineering. Applied350

to forecasting a single load value 30 hours ahead for the Belgian grid, the ap-351

proach consistently outperforms both the operational forecasts of the national352

TSO and several machine learning baselines.353

The proposed architecture offers several key contributions to electricity load354

forecasting. It introduces a generalizable dual-CNN design capable of efficiently355

extracting features from diverse time series inputs, along with a systematic in-356

tegration of optimal persistence forecasts informed by domain knowledge. The357

model balances forecasting accuracy with computational efficiency, enabling the358

use of long historical windows and flexible adaptation to various power systems359

and forecasting horizons. Beyond the Belgian case study, the framework has360

broader applicability in supporting reliable and efficient grid operations, includ-361

ing those transitioning toward renewable-dominant energy systems.362

Future research will focus on extending the architecture to generate proba-363

bilistic forecasts, enabling uncertainty quantification. Enhancing multi-horizon364

prediction capability and integrating recurrent components (e.g., LSTM, GRU)365

could improve temporal consistency and long-term dependency modeling. Incor-366

porating additional inputs such as electricity prices, renewable generation fore-367

casts, and cross-border flows may enhance accuracy. Opportunities also exist in368

transfer learning, adapting models trained on data-rich systems to data-scarce369

regions. Finally, robustness to extreme events could be improved through syn-370

thetic data generation and adversarial training techniques.371

Data and Code Availability372

The datasets used in this study are publicly available. Electricity load and373

system imbalance data were obtained from the ELIA Open Data platform, and374

meteorological data were sourced from the Royal Meteorological Institute of Bel-375

gium. All sources are cited in Section 4. The source code for the proposed model376

and the experiments presented in this paper is publicly available on GitHub:377

https://github.com/gmpal/belgian-load-forecasting.378

https://github.com/gmpal/belgian-load-forecasting
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A Hyperparameter configuration of the algorithms387

included in the benchmark388

ElasticNet: ‘alpha’: 0.7373749519, ‘l1 ratio’: 0.986225753, ‘max iter’: 601.0, ‘se-389

lection’: ‘cyclic’390

GBR: ‘l2 regularization’: 0.53676543, ‘learning rate’: 1.2163556646, ‘loss’: ‘pois-391

son’, ‘max depth’: 19.0, ‘max iter’: 191.0, ‘max leaf nodes’: 49.0,392

‘min samples leaf’: 10.0393

KNN: ‘algorithm’: ‘ball tree’, ‘n neighbors’: 3, ‘weights’: ‘distance’394

Lasso: ‘alpha’: 0.6828204633076271, ‘l1 ratio’: 0.5963760494, ‘max iter’: 862.0,395

‘selection’: ‘random’396

PipeRF: ‘criterion’: ‘squared error’, ‘max depth’: 49.0,397

‘min samples leaf’: 0.003143505644945082, ‘min samples split’: 0.01048220391,398

‘n estimators’: 112.0399

PLS: ‘max iter’: 1644.0, ‘n components’: 43.0400

Ridge: ‘alpha’: 1.924628138196723401

Random Forest: ‘criterion’: ‘friedman mse’, ‘max depth’: 32.0,402

‘min samples leaf’: 0.128454286644, ‘min samples split’: 0.448823903,403

‘n estimators’: 138.0404

LightGBM: ‘boosting type’: ‘gbdt’, ‘learning rate’: 1.207566799,405

‘max depth’: 9.0, ‘min child samples’: 15.0, ‘n estimators’: 183.0,406

‘num leaves’: 85.0, ‘reg alpha’: 1.99499047, ‘reg lambda’: 1.287815559407
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