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Abstract. In the framework of the SMAC, we propose a solution for
classifying earthquake-affected and unaffected regions, as well as for per-
forming earthquake magnitude regression. Additionally, we analyze the
robustness of our approach. We show how most unaffected regions see
no change in the satellite imagery, and how this information helps sim-
plifying the classification and regression methods. We propose the use of
Gradient Boosting methods to complete this approach.
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1 Introduction

In the occasion of ECML-PKDD 2024, the Seismic Monitoring and Analysis
Challenge has been proposed. In this competition, it is asked to classify a set of
satellite images depending on whether or not the represented area has been hit
by an earthquake, and, if so, to determine the magnitude of this earthquake. The
satellite data is obtained by SENTINEL-1 technique (which works like a radar),
emitting vertically polarized signal and receiving the vertically and horizontally
polarized reflection. Those two reflections give different information about the
structure and shape of the target area. More specifically, their evolution in time
give information about the ground deformation. Designing a fast and reliable
pipeline for the classification and the regression of events could improve and
fasten the rescuing and helping people in areas affected by an earthquake.

2 Data

Three datasets are provided for the competition, implemented in the TorchGeo
QuakeSet class:

Training set : 2266 samples: 1319 affected and 947 unaffected
Validation set : 550 samples: 309 affected and 241 unaffected
Testing set : 511 samples: 278 affected and 233 unaffected

http://mlg.ulb.ac.be/
https://www.codabench.org/competitions/2222/
https://www.codabench.org/competitions/2222/
https://www.codabench.org/competitions/2222/
https://github.com/microsoft/torchgeo/tree/main
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Dataset % of affected areas % of unaffected areas #affected/#unaffected
Train 58.2% 41.8% 1.393

Validation 56.2% 43.8% 1.282

Test 54.4% 45.5% 1.193

Table 1: Ratios of affected/unaffected regions for each provided dataset

which leads to a total of 3327 samples. The ratios of affected and unaffected
regions in the different datasets are given in table 1. Each item in those datasets
is a set of four images, a label (affected/unaffected, 0/1) and an earthquake
magnitude (0 if the region is unaffected, and a value between 4 and 10 otherwise).
The four images are Sentinel-1 images (polarized vertical emission - vertical
reflection VV and vertical emission - horizontal reflection VH) taken respectively
at most 13 days before (VVt0 and VHt0) and 13 days after (VVt1 and VHt1) a possible
earthquake event. Each of those images represent a 20 × 20 km2 area, with a
resolution of 512 × 512 pixels. A pixel has therefore a coverage of 39 × 39 m2.
The exact time interval between the two time steps is not provided. Figure 1a
shows an example of item 1. The earthquakes in the three datasets are related
to events for which the epicenter is distributed across the world. The geographic
distribution of those epicenters is shown in figure 1b.

3 Tasks

For each sample, two predictions are performed:

– The classification of the items: affected (positive) or unaffected (negative).
This task is evaluated using the f1-score: TP

TP+ 1
2 (FN+FP )

, where TP, FN
and FP denotes respectively the True Positives, False Negative and False
Positive.

– The regression of the event magnitude (if any). This is evaluated by the
Mean Absolute Error (MAE): 1

N

∑N
i=0 |y − ŷ|, where y and ŷ are respectively

the expected and the predicted magnitude.

In order to assess the scalability of the pipeline, it is required to compute the
number of floating point operations (FLOP) for the inference for one item, includ-
ing the data pre-processing. Unfortunately, the recommended tool, python-papi,
neither runs on our MacOS laptop nor on our lab GPU server. Therefore we pro-
pose a complete computation of this quantity, based on the definition given in
[1], which states:

A floating-point operation is an addition, subtraction, multiplication, or
division operation applied to a number in a single or double precision
floating- point representation.

More importantly, this does not consider comparison nor data access as FLOPs.
1 See section 10 for the figures
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4 Preprocessing

Our solution implies two different kinds of features:

– Quantile-based features
– Zero-differences

Quantiles Quantiles computation only requires comparisons. This lightweight
operation is computed on the pixel constituting the four images in an item, and
on the pixel-wise differences between VVt0 and VVt1 , and between VHt0 and VHt1 .
We compute every quantile of 2% from 0% up to 98% included. This leads to a
total of 300 features.

Zero-differences At the scale of the provided samples (1 pixel covering 39 ×
39 m2), changes have to be massive enough to imply a difference in the satellite
imagery. An unaffected area could exhibit no difference between the two time
steps. Therefore, if one of the two channels difference is all-zero, then the image
can be directly labelled as unaffected and its magnitude can be set to zero2.
This tool allows to correctly classify 709

947 samples in the training set, 152
241 in the

validation set and 113
233 in the test set. Checking this for one sample requires

2× 512× 512 FLOPs (for the computing the pixel-wise differences).

Noisy samples There may be some noise present on the different images. Our
way to process this noise can be explained by looking at the histogram shapes
of the two item classes. We show the shape of the histogram of the difference
between VV images, and of the difference between VH images, if the area is affected
in figure 2a and if the area is unaffected in figure 2. In the case of a normally-
random noised image, the differences will be normally distributed around 0. We
decide to manually threshold the differences to 0.75 in absolute value for VV
images and to 0.05 for VH images. The number of FLOP for this operation is
1×512×512, implied by the difference between the channels. The threshold and
the quantiles are obtained by comparisons and therefore require 0 operations.

Standardization We standardize the extracted features using the norm and
the variance of the training set features. Each feature has to be standardized, so
this implies 300 ∗ 2 FLOPs.

2 We show in the appendix code that on the whole train+val+test set, only one item
has a zero difference despite the fact it is labelled as positive and has a magnitude
of 5.49. This item is discarded from the training set. Aside from this outlier, the
zero-difference rule is correct in all the cases.
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5 Model

The classification and regression tasks are decomposed in three steps:

1. A first estimation of the item class is computed. We predict as unaffected
the ones having at least one channel difference being all-zeros. For the re-
maining ones, we propose to use the lightgbm’s LGBMClassifier, trained on
a dataset from which half of the zero-difference samples, randomly drawn,
are excluded (to reduce the bias implied by the zero-difference samples).
GradientBoosting methods are based on decision trees, which are made of
comparisons. The number of FLOPs required by the inference step is then
0.

2. We compute the regression. We add the class predicted in the previous step
as a feature in the input dataset, and we use lightgbm’s LGBMRegressor to
compute the magnitude. The number of required FLOPs is also 0.

3. The magnitude value is finally used to determine the class: positive if the
magnitude is non-null, negative otherwise. This ensures that the regressed
magnitude and the associated class are coherent (as suggested in the provided
starter-kit).

6 FLOPs evaluation

The only FLOPs that are computed in the presented pipeline are the differences
used in the preprocessing step and the features normalization. The total number
of FLOP needed for the inference of one sample is then: 4× 512× 512 + 600 =
1049176. This result is coherent with the SVC and RFC FLOPs quantity pro-
posed for the classification task in the QuakeSet presentation article.

7 Results

We show in figures 3a and 3b the confusion matrices for the classification of the
validation and the test datasets, and the expected/predicted magnitudes for the
same sets in figures 4a and 4b. We see that the classification is entirely correct.

8 Robustness study of the pipeline

In order to assess the robustness of our pipeline, we compute the different metrics
when the model is trained and validated on different portions of the dataset. We
show that our model is pretty robust to the different combinations. We show in
figure 5 the f1-scores obtained for different combinations of training set (X)
and testing set (y) and the MAE for the regression task on the same combinations
in figure 6.

https://lightgbm.readthedocs.io/en/stable/)
https://lightgbm.readthedocs.io/en/stable/)
https://arxiv.org/abs/2403.18116
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9 Conclusion

In this work, we have detailed our solution for the SMAC. We have shown that
a great proportion of unaffected areas presented no change in the images, and
that this information could be used to improve the predictions. We have shown
that using quantile-based features alongside Gradient Boosting methods could
produce high-quality results while remaining highly scalable. Other strategies
have been attempted, such as CNN, Transformers and RNN, and several
other strategies for features extraction have been implemented. However, they
lead to an extreme increase of required resources, while not improving a lot the
performances of the pipeline. We have consciously made the choice of simplicity
for the sake of scalability.

The code is available on GitHub: https://github.com/pascaltribel/smac-solution/
tree/main.

Disclosure of Interests. The author declares having no competing interests.
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10 Figures

(a) An example of item. We see that there
are a lot of changes between the upper im-
ages (t0) and the lower ones (t1).

(b) Geographic distribution of the earthquakes epicenter across
the world.

Fig. 1: Dataset overview
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(a) Example of histogram of the difference between images in an affected region

(b) Test set

Fig. 2: Example of histogram of the difference between images in an unaffected
region

(a) Validation set (b) Test set

Fig. 3: Classification confusion matrices
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(a) Validation set (b) Test set

Fig. 4: Regression plot of the expected/predicted values

Fig. 5: Classification f1-scores for different combinations of dataset. The result is
quite similar for all the combinations, showing the robustness of the classification
pipeline.
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Fig. 6: MAE of the regression task for different combinations of dataset. Again,
the results are consistent for all the combinations.
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